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Overview	
Networks have long been used to represent important biological processes.  Many of us remember 
memorizing the Krebs (TCA) cycle, which is usually shown as a directed graph, itself a type of network 
(Figure 1).  Recently, however, the use of networks in biology has changed from purely illustrative and 
didactic to more analytic, even including hypothesis 
formulation.  This shift has resulted, in part, from the 
confluence of advances in computation, informatics, 
and high-throughput techniques in systems biology.  
Today the analysis and visualization of biologically 
relevant networks has become commonplace, whether 
the networks represent metabolic, regulatory, or 
signaling pathways; protein-protein or genetic 
interactions; or more abstract connections between 
similar proteins or similar ligands.  Networks are now 
routinely used to show relationships between 
biologically relevant molecules, and analysis of those 
networks is proving valuable for helping us understand 
those relationships and formulate hypotheses about 
biological function.  

With the advent of high-throughput methods that generate vast amounts of data from diverse 
measurement sources – for example gene expression data from microarrays, protein or metabolite 
abundance from mass spectrometry – biological networks have become increasingly important as an 
integrating context for data.   As a commonly understood diagrammatic representation for concepts and 
relationships, networks provide structure that helps reduce underlying complexity of the data.   Network 
tools give us functionality for studying complex processes.   We can analyze global characteristics of 
the data, via metrics such as degree, clustering coefficient, shortest paths, centrality, density.   We can 
identify key elements (hubs) and ‘interesting’ subnets, which can help us to elucidate mechanisms of 
interaction.   Also, visualization of data superimposed upon the network can help us understand how a 
process is modulated or attenuated by a stimulus.    

Network tools have proven to be extremely useful in 
analyzing and visualizing important biological processes.  
Some general applications of networks in biology include:  

• Gene Function Prediction –  Examining genes 
(proteins) in a network context shows connections 
to sets of genes/proteins involved in same 
biological process that are likely to function in that 
process [1-4].   

 

 

  

	
Figure 1. The TCA cycle from WikiPathways 

 

Figure 2.  Gene Function Prediction using 
jActiveModules 
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• Detection of protein complexes/other modular structures – although interaction networks 
are based on pair-wise interactions, there is clear evidence for modularity & higher order 
organization (motifs, feedback loops) [5-9] 

 

• Prediction of new interactions and functional associations – There are several methods for 
predicting interactions and functional associations, based upon network structure and 
correlations amongst data.   For example, orthology-based methods have been used to predict 
interactions for a species based upon orthology to interacting pairs of proteins in evolutionarily 
similar organisms[10].   Other researchers have used Bayesian network approaches to inferring 
gene regulatory networks from time course gene expression data[11].   In another approach, 
shown on the example below, statistically significant domain-domain correlations in protein 
interaction network suggest that certain domain (and domain pairs) mediate protein binding.  
Machine learning extends this to predict protein-protein or genetic interaction through integration 
of diverse types of evidence for interaction [12-14]. 

 

Figure 3.  Identifying molecular complexes in large protein interaction 
networks using MCODE 

Figure 4. Visualizing domain interactions and alternative splicing 
using DomainGraph  
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Moreover, these same tools and their associated analysis and visualization methods can provide key 
insights in the study of disease and in drug development.  These include: 

• Identification of disease subnetworks – identification of disease network subnetworks that 
are transcriptionally active in disease.  These suggest key pathway components in disease 
progression and provide leads for further study and potential therapeutic targets [15-20]. 
 
 
   

• Subnetwork-based diagnosis – subnetworks also provide a rich source of biomarkers for 
disease classification, based on mRNA profiling integrated with protein networks to identify 
subnetwork biomarkers (interconnected genes whose aggregate expression levels are 
predictive of disease state[21, 22]). 
 
 

 

 

 

 

 

 

 

 

 

Figure 5. Gene expression profiles and American Heart Association (AHA) histological 
classification of atherosclerotic lesions (left panel).   Differentiation scores were calculated for 
all genes across pairwise conditions (e.g. diabetic vs. non-diabetic patients).   A large literature 
network was built for atherosclerosis.   Connectivity analysis was used to extract a 
transcriptionally-active subnetwork for diabetic vs. non-diabetic conditions (right panel).   

Figure 6.  A network-based approach identified prognostic markers not as individual genes but 
as subnetworks extracted from molecular interaction databases.   Gene expression profiles 
from Chronic Lymphocytoic Leukemia patients were mapped to a large human molecular 
interaction network.   A search over this network was performed to identify prognostic 
subnetworks that could be used to predict treatment-free survival.  
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• Subnetwork-based gene association – molecular networks will provide a powerful framework 
for mapping common pathway mechanisms affected by collection of genotypes[23, 24].  

 

 

For the purposes of this tutorial, we will classify 
biological networks into three major categories: 
pathways, similarity networks, and interaction 
networks.   Pathways include metabolic, regulatory, 
and signaling networks. Figure 2 shows a pathway 
containing genes involved in glioblastoma 
multiforme, a major form of brain cancer [25].   
These genes were identified by a large-scale 
genetic analysis of copy number variation and 
genetic changes in 206 glioblastoma multiforme 
patients. The study was conducted as part of The 
Cancer Genome Atlas (TCGA) project.  Notably, 
the study demonstrated that there was no single 
genetic defect responsible for glioblastoma 
multiforme, but that all of the cases showed 
significant pathway changes – strongly suggesting 
that this form of cancer is a “pathway disease.” 
From a visualization standpoint, the real power is 
the ability to map expression, mutation, or copy 

	
Figure 8.  Partial pathway showing genes implicated 
in glioblastoma multiforme colored by the changes 
in copy number 

Figure 7.  Cytoscape Mondrian plugin with a dataset 
derived from the TCGA Glioblastoma Pilot Project. This 
dataset contains mutations, copy-number alterations, 
and expression data for 91 samples. 
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number variation data onto pathways to reveal (or suggest) how the pathway and its components 
function under different sets of conditions, including disease states.   Thus, the ability to analyze a 
variety of data sources and types and to map that data onto pathways is crucial.  There are also 
techniques for deriving putative pathways from expression data1 and for modeling the kinetics of 
biological processes [26] that are beyond the scope of this talk. 

Interaction networks comprise the second 
category.  In these networks, nodes represent 
biological entities and edges represent some 
form of interaction or relationship.  A common 
example of this type is a protein-protein 
interaction (PPI) network.  Figure 3 shows a 
yeast protein-protein interaction network 
generated by tandem affinity purification 
followed by mass spectrometry (TAP/MS) [27]. 
Analogous networks have been generated 
based on ligand similarities [28], protein 
similarities [29], and drug-target networks [30].  
Generally, this class of biological networks can 
present as a “hair ball”, where there is so much 
information that the meaningful relationships are 
difficult to discern. There is good evidence that 
analysis of a PPI network to find highly 
connected “hubs” can be used to predict protein complexes [8], and clustering of protein similarity 
networks can provide clues to protein family (and hence functional) assignments (Figure 4). 

A variety of analytical techniques can help to elucidate interaction networks.  Clustering methods such 
as MCL [31] have proven valuable, although several algorithms more specific to various types of 
interaction networks have also been developed (c.f.[5].  In addition to clustering, a variety of metrics 
can be applied to an interaction network or nodes within the network.  The average density (node 

degree) of the network, average shortest-path distance, 
number of connected components, measures of centrality, 
and the extent to which the network fits a scale-free model 
are all useful descriptors for the analysis of an interaction 
network.  Altering the layout and visual attributes of the 
network can also be helpful.   

Cytoscape is an open-source application for the 
visualization and analysis of (biological) networks.  During 
my talk, I will use Cytoscape to demonstrate some of the 
techniques for visualizing and analyzing biological 
networks.  In addition, I will demonstrate some ways that 
biological networks can be combined with other data to 
help elucidate function or the possible implications of 
changes in biological function due to perturbation, 
mutation, or infection.	  

																																																								
1	c.f. the ExpressionCorrelation plugin from Gary Bader's lab: http://baderlab.org/Software/ExpressionCorrelation	

	
Figure 9.  Partial protein-protein interaction network 
for Saccharomyses cerevisiea colored by predicted 

complexes. 

	
Figure 10.  Protein similarity network of the 

amidohydrolase enzyme superfamily colored 
by subgroup. 
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Introductions	and	setup		

Introductions	
	

The	three	instructors	that	initiated	this	tutorial	
are	experienced	Cytoscape	developers,	with	a	
cumulative	of	15	years	of	participation	in	the	
Cytoscape	core	team.		All	three	have	a	strong	
background	in	Cytoscape	development,	both	from	
the	perspective	of	core	development,	but	also	from	
the	perspective	of	developing	plugins	that	extend	
Cytoscape	functionality.		They	also	have	a	long	
history	of	working	in	the	biomedical	field,	both	
from	the	perspective	of	tool	developers	and	the	
underlying	science.		

Notes	
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Setup	
For	the	purposes	of	this	tutorial,	we	will	be	using	
Cytoscape	3.4.	3.x	is	the	whole	new	version	of	
Cytoscape	with	modular	architecture.	It	is	
designed	for	long-term	maintainability	and	
eventually	it	replaces	2.x	series.	New	major	
features,	including	new	user	interfaces,	headless	
(command-line)	distribution,	and	multiple	
rendering	engine	support,	will	be	released	for	
this	version.	Cytoscape	3.4	is	available	as	
installers	for	Mac,	Windows,	and	Linux,	which	
include	the	core	and	sample	files.		Apps	are	
generally	available	for	download	with	
Cytoscape’s	App	Manager	or	from	the	App	Store	at	
http://apps.cytoscape.org/.			

To	avoid	potential	network	problems	or	
contention,	we	have	provided	all	of	the	plugins	
that	we	will	use	for	today	on	the	CD	that	we’ve	
distributed.	

	

Notes	 	
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Biological	Networks		
In	this	section,	we	will	begin	to	explore	the	use	of	
networks	in	biology.		We	begin	by	posing	a	
challenge:	how	do	we	make	sense	of	biological	
networks?		We	pose	that	challenge	by	providing	a	
series	of	pictorial	examples	of	networks	in	biology.	

The	Challenge	
The	images	on	this	slide	are	all	representations	of	
biological	networks.		The	challenge	we	are	faced	
with	is	to	extract	the	“meaning”	behind	these	
representations,	which	may	be	a	purely	visual	
challenge,	but	it	might	also	involve	analytical	
approaches.	

All	of	the	images	at	the	right	represent	biological	
networks,	including	the	Excel	spreadsheet.		
Without	more	information	about	the	content,	
these	images	don’t	tell	us	much.		How	can	we	
extract	this	meaning?		What	are	the	analytical	
techniques?	What	are	the	common	visualization	
approaches?	

		

Notes		 	
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If	we	simply	think	of	a	biological	network	as	a	list	of	
nodes	and	the	edges	that	connect	them,	we’re	not	
going	to	be	able	to	gain	much	information.		However,	
if	we	add	information	to	those	nodes	and	edges	to	
that	we	can	analyze	the	interactions	(or	similarities)	
in	more	depth,	or	we	use	that	additional	information	
to	visualize	the	nodes	in	some	meaningful	manner,	
we	will	find	it	easier	to	gain	(or	communicate)	
insight	about	aspects	of	the	network.		There	are	a	
number	of	analytical	and	visualization	approaches	
that	can	help	us,	which	are	described	below.		

Taking	the	networks	that	we	showed	before,	we	can	
begin	to	analyze	or	visualize	additional	data.		In	the	image	
at	the	right,	we’ve	colored	the	nodes	in	the	network	by	
protein	family	membership	(members	of	protein	families	
share	functional	characteristics),	and	then	performed	an	
edge-weighted	layout	where	the	edge	weights	represent	
the	BLAST	similarity	between	the	proteins.		As	you	can	
see	pretty	quickly	that	similar	proteins	tend	to	group	
together.	

In	this	example,	we’ve	combined	a	network	
representation	with	an	analysis	of	some	of	the	
associated	data.		The	image	at	the	left	is	a	hierarchical	
clustering	of	all	of	the	genes	in	the	TCGA	glioblastoma	
study	vs.	all	of	the	patients	in	the	study.		This	allows	us	
to	look	for	patterns	in	the	heat	map	and	associate	those	
patterns	with	specific	genes	or	groups	of	genes	in	the	
pathway.	

In	the	final	example	on	the	right,	we	have	combined	two	
different	visualizations	with	two	different	analyses.		The	
heat	map	on	the	left	represents	a	hierarchical	cluster	of	
genetic	interactions	and	the	network	shows	the	results	of	
an	MCL	cluster	of	a	set	of	physical	interactions.		These	
views	are	linked,	allowing	users	to	select	groups	in	one	
view	and	determine	if	the	same	groups	exist	in	the	other	
view.		This	allows	researchers	to	explore	areas	where	
there	are	tight	protein-protein	physical	interactions	as	
well	as	genetic	interactions,	providing	pretty	strong	
evidence	for	the	existence	of	a	complex.	

But,	how	do	we	know	what	kinds	of	analyses	make	sense,	and	what	kinds	of	visualizations	are	
appropriate?	
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Biological	Network	Taxonomy	
Before	tackling	this	question,	we	need	to	understand	that	not	all	“biological	networks”	are	the	
same.		In	particular,	there	is	a	sort	of	taxonomy	of	networks	–	each	visualization	or	analytical	
technique	can	be	either	more	or	less	appropriate	for	the	different	network	types.			For	our	
purposes,	we	can	divide	these	biological	networks	into	3	main	groups:	pathways,	interaction	
networks,	and	similarity	networks.	

Pathways	
The	first	type	of	network	in	our	taxonomy	is	
probably	the	most	familiar.		We’ve	all	seen	
pathway	diagrams,	whether	those	pathways	
represent	signaling	pathways,	metabolic	pathways,	
or	regulatory	pathways.		These	networks	are	often	
hand-curated	diagrams	that	have	been	
constructed	for	didactic	purposes.		However,	even	
though	the	positions	and	graphical	annotations	
associated	with	these	networks	does	not	lend	
them	to	the	normal	types	of	network	analysis	
techniques,	they	can	be	extremely	useful	as	
templates	on	which	we	can	paint	expression	
profile	information,	or	any	other	kinds	of	
annotation	that	we	want	to	use	to	show	information	associated	with	the	curated	pathway.		
Phylogenetic	trees	can	also	be	thought	of	in	a	similar	fashion	of	those	trees	have	been	hand	
curated	like	the	kinase	phylogenetic	tree	[32]	shown	in	the	slide.	

	

Notes	 	
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Interactions	
The	second	type	of	networks	in	our	taxonomy	are	
interaction	networks.		While	pathways	are	
probably	familiar	to	most	because	of	their	use	for	
educational	purposes,	interaction	networks	are	
what	most	people	of	when	we	think	of	“network	
biology”.			Basically,	these	networks	reflect	the	
interactions	between	biological	entities.		The	
entities	might	all	be	proteins,	giving	us	the	
canonical	protein-protein	interaction	network	
shown	to	the	right	in	the	first	frame.			The	
interacting	entities	also	be	genes,	in	which	case,	
the	network	could	be	a	genetic	interaction	
network.		The	middle	panel	at	the	right	shows	a	
particular	representation	of	an	epistatic	miniarray	
profile	(EMAP).		These	networks	are	formed	by	
recording	the	differential	results	of	double-delete	
mutants	when	compared	to	the	expected	
combination	of	single-delete	mutants.		The	last	
network	shows	a	protein-ligand	interaction	
network.		Interaction	networks	don’t	necessarily	
need	to	have	only	one	interacting	entity,	and	as	we	
are	rediscovering	the	importance	of	metabolic	
pathways,	the	“metabolome”,	which	combines	
metabolites	with	the	enzymes	and	regulatory	
proteins	which	control	metabolism.		There	are	
also	efforts	underway	to	understand	how	the	
interactomes	of	pathogens	interact	with	the	
interactomes	of	their	hosts	–	yet	another	kind	of	
“mixed”	interaction	network.	

Of	course,	there	are	many	kinds	of	biological	
interactions	we	might	be	interested	in,	up	to	and	
including	how	people	interact	with	each	other.		Such	
social	networks	are	beyond	our	scope,	but	social	
network	analysis	is	very	similar	to	biological	
networks	analysis	and	provide	a	fruitful	source	of	algorithms	and	visualization	techniques.	

Notes	 	
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Similarity	
The	final	type	of	networks	we	want	to	discuss	are	
similarity	networks.		In	similarity	networks,	the	
nodes	represent	biological	entities	and	the	edges	
represent	some	measure	of	the	similarity	between	
them.		There	are	several	types	of	similarity	
networks	that	are	commonly	used	in	biology	today.		
One	common	similarity	metric	is	the	Tanimoto	
coefficient[33-35],	which	represents	the	similarity	
between	two	small	molecules	based	on	the	
chemical	fingerprints	of	each	of	them[36].		Other	
similarity	metrics	include	sequence	similarity	as	
measured	by	BLAST[29,	37],	PSI-BLAST[38],	or	
Smith-Waterman[39],	structural	similarity	as	measured	
by	RMSD	or	other	structural	similarity	measures[40-
45],	or	the	ligand	similarity	as	measure	by	the	similarity	
ensemble	approach	(SEA)	method[28].	

There	are	other	types	of	non-biological	networks	that	
use	various	kinds	of	similarity	measures.		Tag	
clouds[46]	and	topic	maps[47],	which	is	one	of	the	
semantic	web	technologies.	

The	images	at	the	right	show	two	examples	of	
similarity	networks.		The	network	on	top	is	a	protein-
protein	similarity	network	showing	the	
Amidohydrolase	enzyme	superfamily	from	the	
Structure-Function	Linkage	Database	(SFLD)[48].		
The	colors	on	the	network	represent	proteins	of	
similar	function.		Note	that	these	proteins	tend	to	
group	together	based	on	their	BLAST	similarity[29].	

The	network	on	the	bottom	shows	a	network	of	small-
molecules	where	the	edges	represent	the	Tanimoto	
similarity	between	them.		These	networks	can	be	useful	to	find	molecules	with	similar	structural	
characteristics	

Notes		 	
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Analytical	Approaches	
The	analysis	of	networks	is	a	large	and	complex	topic	that	we	can’t	do	justice	in	a	single	tutorial	
(even	less	a	tutorial	handout).		In	general,	network	analysis	is	part	of	the	mathematics	known	as	
graph	theory,	and	there	are	entire	conferences	(and	many	textbooks)	devoted	to	the	area.		A	good	
starting	point	might	the	Wikipedia	article[49]	or	the	online	book	“Graph	Theory	with	
Applications”[50].		Our	goal	here	is	to	provide	a	brief	introduction	and	touch	on	some	of	the	main	
approaches	used	with	biological	networks.	

Organization	of	complex	networks	
Complex	networks	have	different	levels	of	
organization.	The	illustrations	on	the	right	show	how	
to	breakdown	the	hairball	that	arises	when	we	
usually	plot	a	large	complex	network.	First,	we	can	
look	at	single	nodes	and	their	local	properties	as	the	
node	degree.	These	nodes	are	then	linked	to	form	
motifs,	small	subnetworks	of	three	or	more	nodes.	
Motifs	are	combined	to	form	communities	or	modules	
and	communities	are	joined	into	the	entire	network.	
The	hierarchy	of	the	network	describes	how	the	
various	structural	elements	are	combined.	

There	are	some	typical	analysis	tasks	that	are	often	
performed	with	biological	networks.		

• Network topology statistics are easy to compute 
and to compare among different networks. 
Among others they include node centrality, 
betweenness, degree distribution of nodes, 
clustering coefficient, shortest path between 
nodes and robustness of the network to the 
random removal of single nodes.  

• Modularity refers to the identification of sub-
networks of interconnected nodes that might 
represent molecules physically or functionally 
linked that work coordinately to achieve a 
specific function. 

• Motif analysis is the identification of small 
network patterns (or subgraphs) that are over-
represented when compared with a randomized version of the same network. Discrete biological 
processes such as regulatory elements are often composed of such motifs. 

• Network alignment and comparison tools can identify similarities between networks (such as 
common subgraphs) and have been used to study evolutionary relationships between protein 
networks of organisms.	
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Concepts	
In	mathematical	terms,	a	biological	network	(any	
network	for	that	matter)	is	a	graph,	often	written:		

G	=	(V(G),	E(G),	ψG)		
where	V(G)	are	the	set	of	vertices	(nodes)	in	the	
graph	and	E(G)	are	the	set	of	edges.		In	this	
particular	notation,	ψG	is	the	set	of	incidence	
functions	that	define	which	edge	goes	with	which	
vertices.			

The	edges	between	nodes	can	either	be	directed	
or	undirected.		This	is	easiest	to	understand	
when	considering	the	degree	of	a	node.		In	an	
undirected	network,	the	degree	of	a	node	is	
simply	the	number	of	edges	connected	to	it.			In	
the	first	simple	network	at	the	right,	the	node	
(node0)	has	three	edges	connected	to	it,	so	it	has	a	
degree	of	3.		In	a	network	with	directed	edges,	we	
need	to	expand	our	concept	of	degree	to	include	in-
degree,	the	number	of	edges	that	connect	to	this	
node,	and	out-degree,	the	number	of	edges	that	
originate	from	this	node.		In	the	second	network	at	
the	right,	the	size	of	the	nodes	reflects	the	node	
degree.	

There	are	also	differences	between	the	types	of	
networks.		The	first	network	at	the	right	is	a	
multigraph.		In	a	multigraph,	there	can	be	multiple	
edges	between	nodes.		The	network	at	the	far	right	
on	the	other	hand,	is	a	hypergraph.		In	a	hypergraph,	
an	edge	can	be	connected	to	more	than	two	edges.	

Notes	

	

	 	



	 	 Revised	05/26/2016	

Scale-free	networks	
One	property	of	network	topology	that	is	of	
interest	is	the	degree	distribution	–	that	is,	the	
distribution	of	how	many	edges	each	node	has	
(also	referred	to	as	the	connectivity	
distribution)[51].		A	network	is	said	to	be	scale-
free	if	the	degree	distribution	fits	a	power	law.		It	
has	been	reported	that	many	types	of	biological	
networks	are	scale	free[52-62].		The	
characteristics	of	scale-free	networks	are	that	
there	is	a	short	path	from	any	node	to	another	
node	(small	world	property),	there	are	many	nodes	
with	few	connections	and	a	few	nodes	
with	many	connections	(hubs),	and	the	
hubs	are	enriched	with	essential/legal	
nodes	(centrality	and	lethality	
principal)[52,	63].	

Scale-free	networks	have	interesting	
properties	for	biological	systems	–	in	
particular,	they	are	robust	to	random	
breakdowns[64].		They	are	also	(as	the	
name	implies)	invariant	to	changes	in	
scale.		On	the	other	hand,	recent	analysis	
of	several	data	sources	have	begun	to	
throw	into	question	exactly	how	well	
many	biological	networks	fit	the	scale-free	
power	law	distribution[63,	65-67].		So,	while	none	of	the	
authors	have	suggested	that	biological	networks	don’t	
exhibit	some	scale-free	characteristics,	they	don’t	fit	the	power-law	degree	distribution	well	
enough	to	be	considered	scale-free.	

It	should	also	be	noted	that	biological	networks	aren’t	the	only	network	type	that	tends	to	be	
scale-free.		For	example,	both	social	networks	and	the	Internet	tend	to	be	scale-free[68,	69].		In	
both	cases	the	overall	topology	tends	to	be	one	with	a	few	hubs	of	high	degree	and	lots	of	lower-
degree	nodes.	

	Notes	
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Small-world	networks	
One	of	the	striking	properties	of	many	empirical	
networks	is	that	despite	their	huge	size,	the	average	
path	length	is	usually	surprisingly	small	[70].	Such	
networks	are	called	small-world	networks.		

Formally,	a	small-world	network	is	defined	to	be	a	
network	where	the	typical	distance	L	between	two	
randomly	chosen	nodes	grows	proportionally	to	the	
logarithm	of	the	number	of	nodes	N	in	the	network:	

																								L	∝	log	N	

Many	real-world	systems	have	small-world	
properties	when	represented	as	networks.	They	
include	the	WWW,	food	chains,	electric	power	grids,	
metabolite	processing	networks,	networks	of	brain	
neurons,	telephone	call	graphs,	and	social	influence	
networks.	

Interaction	networks	are	also	shown	to	be	small-
world	networks	[51].	This	could	indicate	that	local	
pertrubations	such	as	regulation	of	the	biological	
activity	of	a	given	protein	could	reach	the	whole	
network	very	quickly.	

	

	

	

Notes	

	



	 	 Revised	05/26/2016	

Random	networks	
Random	networks	(random	graphs)	are	important	
tools	for	determining	the	extent	to	which	a	
computationally	derived	network	differs	from	a	
similar	“random	network”.		This	is,	in	principal,	the	
same	idea	behind	the	BLAST	expectation	value	or	
the	p	value	that	you	might	get	from	a	statistical	test.	

Networks,	however,	are	complicated,	and	
developing	an	appropriate	probability	model	is	non-
trivial.		There	are	several	algorithms	commonly	
used	to	generate	random	networks.			In	the	simplest	
case,	you	can	just	generate	a	graph,	G(n,p),	where	for	
any	two	nodes	N1	and	N2,	there	is	a	probability	p	
that	there	is	an	edge	between	them[71].		This	is	similar	to	the	Erdős-Rényi	model([72,	73]	as	cited	
in	[74]),	but	in	the	Erdős-Rényi	model,	the	number	of	edges	is	restricted	to	a	fixed	number,	M.		
Thus,	the	graph,	G(n,M),	is	a	graph	where	all	of	the	M	edges	appear	with	equal	probability.		

The	problem	with	both	of	these	“flat”	models	is	that	neither	of	the	models	are	likely	to	result	in	
graphs	that	exhibit	the	characteristics	of	biological	networks	(small	world,	scale-free)	discussed	
above.			One	approach	to	this	is	to	explicitly	model	the	random	graph	such	that	it	exhibits	small-
world	properties	(short	average	path	lengths	and	high	clustering).		The	is	the	approach	proposed	
by	Watts	and	Strogatz[70].			In	the	Watts	and	Strogatz	model,	there	are	three	key	parameters:	the	
number	of	nodes,	N,	the	mean	degree	of	the	nodes,	K,	and	a	tuning	parameter	β,	which	is	between	
0	and	1.		The	algorithms	begins	by	generating	a	network	with	N	nodes,	each	connected	to	K	
neighbors,	K/2	on	each	side.		Then	for	every	edge	(ni,nj)	rewire	that	edge	with	probability	β	such	
that	there	are	no	loops	and	there	is	no	duplicate	edges.		The	result	depends	on	the	value	of	β.		If	β	
is	near	zero,	the	result	is	a	regular	lattice.		If	β	is	one,	this	approaches	the	random	graph	similar	to	

the	Erdős-Rényi	model	with	

€ 

p =
NK
2 N

2( )
	

Another	approach	is	to	implement	a	random	graph	that	
is	scale-free.		The	Barabási-Albert	model	is	an	approach	
to	generating	random	scale-free	graphs[68].		This	
approach	starts	with	a	small	network	G(n,m),	where	n	is	
the	number	of	nodes	(≥2)	and	m	is	the	number	of	edges.		
The	requirement	is	that	all	nodes	have	degree	of	at	least	
1.		Then	new	nodes	are	added	according	to	a	probability	
pi:	

€ 

pi = ki
kjj∑
	

where	ki	is	the	degree	of	the	node	i.			This	results	in	hubs	
(nodes	with	more	edges)	continuing	to	get	more	edges	
and	nodes	with	fewer	edges	being	less	likely	to	get	new	edges.		This	results	in	a	degree	
distribution	that	fits	the	scale-free	model	quite	well,	but	is	still	random	in	nature.	 	
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Network	measures	
	We’ve	mentioned	the	three	most	common	
network	measures	already:	node	degree,	path	
length,	and	clustering	coefficient.		The	first	two	of	
these	are	intuitively	understandable.		The	third	is	
a	little	more	difficult	to	conceptualize	since	it	
doesn’t	fit	our	concept	of	clusters	(i.e.	groupings	of	
nodes	or	modularity)	very	well.	

Node	degree	is,	as	we’ve	already	mentioned,	the	
number	of	edges	connected	to	this	node.		In	a	
directed	network,	the	node	indegree	is	the	number	
of	edges	directed	towards	this	node,	and	the	node	
outdegree	is	the	number	of	edges	directed	away	
from	this	node.		In	the	network	at	the	right,	for	
example,	node3	has	an	indegree	of	2	and	an	outdegree	
of	1	(assuming	we	count	the	undirected	edge	as	both	
in	and	out).		

Path	length	is	also	relatively	easy	to	imagine.		If	we	
look	for	the	shortest	path	from	node0	to	node3	(the	
first	network	at	the	right)	it’s	the	edge	between	them.		
On	the	other	hand,	the	shortest	path	from	node3	to	
node0	goes	through	node2	(because	the	edge	
between	node0	and	node3	is	directed).			The	length	of	the	path	
is	often	just	a	hop	count	(1	in	the	first	example,	2	in	the	second),	
but	can	also	be	weighted,	which	might	mean	the	shortest	path	is	
not	the	path	that	traverses	the	fewest	nodes.	

The	clustering	coefficient	is	a	measure	of	the	degree	to	which	
nodes	form	a	complete	graph.		It	was	originally	defined	to	
measure	the	degree	to	which	a	network	exhibits	small-world	
properties[70].		For	undirected	graphs,	the	local	clustering	
coefficient	is	given	as	the	number	of	edges	between	neighbors	of	

node	i	divided	by	the	maximum	possible	number	of	edges:	

€ 

Ci =
2 ejk{ }
ki(ki −1)

	

In	the	network	example	at	the	right	(assuming	it’s	undirected),	node3	has	two	neighbors	(degree	
2),	node2	and	node0	share	an	edge,	so	we	have	(2*1)/2(2-1)	=	1.		On	the	other	hand,	node0	is	
degree	3,	but	only	node2	and	node3	are	connected,	so	we	have	(2*1)/3(3-1)	=	.3.		The	network	
average	clustering	coefficient	can	be	used	to	express	the	degree	to	which	a	graph	exhibits	small-

world	properties.		The	average	is	simply:	

€ 

C =
1
n

Ci
i=1

n
∑ 	
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Another	important	set	of	networks	measures	that	
has	important	properties	are	the	various	
centrality	measures.		These	approaches	(in	
general)	attempt	to	provide	a	measure	of	the	
importance	of	a	given	node.		There	are	many	
centrality	measures,	but	we’ll	just	discuss	three	of	
them	here.	

The	first	centrality	measure	we’ll	discuss	is	degree	
centrality.		Nodes	with	high	degree	centrality	are	
the	hubs	in	scale-free	networks,	for	example.		This	
is	an	easy	measure	to	compute	the	degree	
centrality	(CD)	of	node	v:	

€ 

CD(v) = deg(v )
n−1 ,	where	n	is	

the	number	of	nodes	in	the	network.		

Betweenness	centrality	is	another	centrality	
measure	than	tends	to	reflect	the	essentiality	of	a	
node	in	the	network.		Essentially	it	measures	the	
extent	to	which	“all	roads	lead	through”	this	node.		
The	betweenness	centrality	for	a	node	v	is	
calculated	as:	

€ 

CB(v) = σst(v )
σsts≠v≠ t∈V

∑ ,	where	σst	is	the	
number	of	shortest	paths	from	s	to	t	and	σst	(v)	is	
the	number	of	shortest	paths	from	s	to	t	that	go	
through	v.		Betweenness	is	usually	normalized	by	
dividing	with	the	number	of	node	pairs.	Intuitively,	
this	makes	sense	–	if	a	large	percentage	of	the	shortest	paths	between	two	nodes	go	through	a	
given	node,	removal	of	that	node	will	have	a	significant	effect	on	the	network	topology	(from	the	
perspective	of	those	two	nodes).	

Closeness	centrality	is	the	degree	to	which	this	node	is	close	to	all	other	nodes.		It	is	again	
calculated	based	on	shortest	paths:	

€ 

CC(v) =
S(v,t )t≠v∈V∑

n−1 ,	where	S(v,t)	is	the	shortest	path	between	v	
and	t.		So,	in	a	star	topology,	where	all	nodes	are	connected	to	a	single	hub,	the	closeness	centrality	
measure	for	the	hub	is	1	and	~2	for	all	other	nodes2.		This	value	is	usually	reported	as	the	inverse,	
1/Cc(v).		

Notes		

																																																								
2	It’s	approximately	2	because	the	shortest	path	between	a	non-hub	node	and	all	of	the	other	nodes	is	2	
except	for	the	hub	node,	in	which	case	the	shortest	path	is	1.	
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Clustering	

Clustering	is	a	heavily	used	technique	for	
analyzing	networks,	both	biological	and	otherwise.		
The	overall	goal	of	clustering	is	to	group	items	
together	that	are	related	based	on	some	measure.		
Clustering	is	an	active	area	of	research	and	there	
are	many	clustering	algorithms	that	have	long	
been	used	for	biological	applications,	and	even	
more	algorithms	that	are	being	developed	for	
specialized	purposes.			

Before	we	talk	about	specific	clustering	
approaches,	it	is	important	to	understand	that	all	
of	the	clustering	approaches	depend	on	some	
metric	for	determining	the	similarity	of	the	items	being	clustered.			This	similarity	metric	is	
termed	a	distance	metric	in	clustering	terms,	and	there	are	a	number	of	ways	to	calculate	the	
distance	in	feature	space	(that	is,	the	terms	or	values	you	are	using	to	determine	the	similarity	
between	objects).		A	common	measure	is	the	Euclidean	distance,	which	is	simply	the	distance	
between	two	points	in	n-dimensional	space:	
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d(p,q) = q1 − p1( )2 + q2 − p2( )2 + ...+ qn − pn( )2 	

Other	common	techniques	are	based	on	the	Pearson	correlation,	r,	between	any	two	series	of	
numbers	x	=	(x1,	x2,	…,	xn)	and	y	=	(y1,	y2,	…,	yn),	which	is	defined	as:	
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where	σx	is	the	standard	deviation	of	the	x	series,	and	σy	is	the	standard	deviation	of	the	y	series.	

This	term	can	be	either	centered	(as	above),	or	uncentered,	which	assumes	a	mean	of	zero	(even	if	
it’s	not).		There	are	many	other	approaches	to	calculating	the	distance,	from	taking	the	negative	
log	of	the	BLAST	e-value	to	much	more	complicated	approaches	designed	to	account	for	specific	
characteristics	of	the	data.	

Hierarchical	Clustering	
A	very	common	clustering	approach	is	hierarchical	clustering[75].		As	the	name	implies,	this	
approach	divides	the	objects	into	a	pairwise	hierarchy.		Hierarchical	clustering	has	been	used	for	
many	years	as	one	of	the	major	approaches	to	analyzing	and	visualizing	microarray	data[76].		An	
important	first	step	in	performing	hierarchical	clustering	is	to	determine	the	distance	metric	
(above).		The	second	step	is	to	determine	how	to	link	the	pairwise	distances3:	

• Single linkage clustering takes the minimum pairwise distance,	
• Complete linkage clustering takes the maximum pairwise distance,	

																																																								
3	This	list	is	taken	from	the	clustering	approaches	used	in	the	original	Cluster	program	from	Eisen	
and	colleagues,	which	has	been	inherited	by	clusterMaker	and	other	Cluster-clones.	
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• Average linkage clustering (UPGMA) takes the average of all of the pairwise distances,	
• Centroid linkage clustering takes the distance between the centroids of all pairs of elements.	

Once	the	metrics	and	linkages	have	been	selected,	clustering	may	be	accomplished	by	either	an	
agglomerative	(bottom-up)	or	divisive	(top-down)	method.		In	either	case,	the	result	is	tree	
(hierarchy)	where	the	nodes	closer	together	in	the	tree	are	more	similar.		For	microarray	data,	
this	is	often	shown	as	a	dendrogram	associated	with	the	heatmap	that	reflects	the	fold	changes	in	
the	expression	data	(see	the	example	below).	

	

k-Means	Clustering	
Another	common	clustering	technique	is	k-means[77,	78].		In	k-means	clustering	the	algorithm	
divides	the	data	set	up	into	k	groups	in	such	a	way	that	the	value	of	the	item	gets	assigned	to	the	
cluster	with	the	nearest	mean.		The	approach	is	relatively	simple:	given	a	set	of	n	data	items		the	
idea	is	to	partition	the	n	items	into	k	sets	so	as	to	minimize	the	within-cluster	sum	of	squares	
(WCSS):	
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where	S	=	(S1,	S2,	…,	Sn)	are	the	clusters		and	ui	are	the	mean	of	the	points	in	each	cluster	Si.		k-
means	has	been	used	in	a	number	of	applications,	and	has	been	incorporated	in	to	a	number	of	
other	algorithms.	

There	are	many	other	clustering	algorithms	and	combinations	of	algorithms	used	in	network	
applications	–	far	too	many	for	us	to	cover	here.		Often	these	algorithms	are	general	algorithms	
(e.g.	Community	clustering[79],	MCL[31,	80,	81],	Spectral	Clustering[82-86],	and	Affinity	
Propagation[87,	88])	and	often	they	designed	for	special	purposes	(e.g.	SCPS[89],	MCODE[5],	
FORCE[90],	TransClust[91]).				Some	algorithms	are	actually	combinations	of	algorithms	(e.g.	
AutoSOME[92]).		We’re	going	to	cover	only	three	of	these	algorithms	(MCL,	Spectral,	and	Affinity	
Propagation),	but	the	interested	reader	is	encouraged	to	explore	the	references	below.	

MCL	Clustering	
MCL	clustering	(MCL	is	short	for	Markov	Clustering)	is	a	clustering	approach	that	simulates	a	
weighted	random	walk	through	a	network.		The	idea	behind	the	algorithm	is	that	because	edges	
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within	the	natural	groupings	will	most	likely	stay	within	the	group,	the	vast	majority	of	the	steps	
in	a	random	walk	will	be	within	the	natural	group.		The	other	way	to	think	about	it	is	by	imagining	
edges	as	flows	–	most	of	the	flow	through	a	network	with	natural	clusters	will	stay	within	the	
clusters	–	very	little	will	flow	between	the	clusters.		The	simulation	of	the	random	walk	is	by	
alternate	application	of	two	operations:	expansion	and	inflation.		First,	the	distance	matrix	is	
converted	to	a	stochastic	matrix	(a	non-negative	matrix	where	each	of	the	columns	sums	to	1).		In	
the	expansion	step,	the	stochastic	matrix	is	squared	using	the	normal	matrix	product.		In	the	
inflation	step,	the	Hadamard	product	of	the	matrix	(entry-wise	multiplication	by	an	inflation	
parameter,	I)	is	taken.		After	the	inflation	step,	a	scaling	step	is	added	which	returns	the	matrix	to	
a	stochastic	matrix.		Repeated	expansion	and	inflation	will	have	the	result	of	removing	cells	in	the	
distance	matrix	(i.e.	edges)	that	represent	inter-cluster	edges.	

MCL	clustering	has	been	used	for	a	large	number	of	biological	applications,	including	the	finding	of	
protein	complexes	in	protein-protein	interaction	networks	and	the	grouping	of	proteins	in	protein	
similarity	networks.		MCL	has	proven	to	be	very	fast	and	robust	with	then	number	of	edges	is	
reasonably	low,	but	can	have	problems	resolving	dense	networks	necessitating	some	form	of	
algorithm	or	user-chosen	cut-off	value	to	reduce	the	edge	density[93].		MCL	has	the	nice	
characteristic	that	it	does	not	necessitate	the	user	to	select	the	number	of	clusters	in	advance,	
although	the	inflation	parameter	I	does	have	to	be	specified.	

Spectral	Clustering	
Spectral	clustering	takes	in	name	from	the	use	of	spectral	properties	of	the	similarity	(or	distance)	
matrix	constructed	from	the	network.		Given	a	set	of	data	points	A,	the	similarity	matrix	may	be	
defined	as	a	matrix	S	where	Sij	represents	a	measure	of	the	similarity	between	points	i	and	j	which	
are	members	of	the	set	A.		Spectral	clustering	techniques	make	use	of	the	spectrum	of	this	matrix	
of	the	data	to	perform	dimensionality	reduction	for	clustering	in	fewer	dimensions.	

One	such	technique	is	the	Normalized	Cuts	algorithm[94,	95],	commonly	used	for	image	
segmentation.	It	partitions	points	into	two	sets	(S1,S2)	based	on	the	eigenvector	v	corresponding	to	
the	second-smallest	eigenvalue	of	the	Laplacian	matrix	
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of S, where D is the diagonal matrix 
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This partitioning may be done in various ways, such as by taking the median m of the components in v, 
and placing all points whose component in v is greater than m in S1, and the rest in S2. The algorithm can 
be used for hierarchical clustering by repeatedly partitioning the subsets in this fashion. 

A related algorithm is the Meila-Shi algorithm[82], which takes the eigenvectors corresponding to the k 
largest eigenvalues of the matrix P = SD−1 for some k, and then invokes another (e.g. k-means) to cluster 
points by their respective k components in these eigenvectors. 
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Spectral clustering techniques are very useful in biology, but they have the disadvantage that since they 
essentially divide the data into two sets, you must either combine them with something like k-means or 
use a hierarchical decomposition to arrive at a more refined clustering.  

Affinity	Propagation	
Affinity	propagation[87]	is	a	newer	algorithm	that	takes	a	message	passing	approach	rather	than	a	
mathematical	approach	to	clustering.		Basically,	as	with	the	other	approaches,	affinity	propagation	
takes	a	similarity	matrix	s(i,j),	which	represents	the	starting	point	of	the	algorithm.			In	addition,	
each	point	is	given	a	preference	value	s(k,k)	which	is	used	to	seed	the	likelihood	of	this	point	being	
an	exemplar	for	the	formation	of	a	cluster	(this	is	often	just	set	to	a	flat	value	to	allow	the	
algorithm	to	learn	the	number	of	clusters).		Then,	the	points	exchange	messages	of	two	types:		
responsibilities	(r(i,k))	are	sent	from	point	i	to	point	k	and	reflects	the	degree	to	which	k	is	a	good	
exemplar	for	point	i;	and	availability	(a(i,k))	is	sent	from	point	k	to	point	i	to	reflect	the	evidence	
for	i	to	choose	k	for	its	exemplar.		The	algorithm	runs	until	some	stopping	point	usually	based	on	
the	degree	to	which	r(i,k)	and	a(i,k)	change	during	each	pass.		See	their	web	site	(http://	
www.psi.toronto.edu/index.php?q=affinity	propagation)	for	more	information	about	the	
algorithm	and	its	application.	

Affinity	propagation	has	numerous	applications	in	biology	and	seems	to	perform	well	in	the	
datasets	provided	by	the	authors.			Some	comparative	analysis	by	others[96]	suggests	that	other	
algorithms	might	be	less	susceptible	to	noise	and	more	robust	for	some	applications.		

Notes		
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Guilt	by	association	
Another	technique	for	finding	the	function	of	
unknown	genes	is	“guilt	by	association”.				The	
basic	idea	is	simple	–	if	a	particular	gene	or	
protein	is	“associated”	with	one	or	more	other	
genes	or	proteins	of	a	particular	function,	then	
that	gene	or	protein	likely	shares	that	function.		
A	common	example	is	to	look	at	the	expression	
profile	of	a	gene	and	then	match	it	to	a	number	
of	genes	that	are	similarly	expressed.		If	all	of	the	
genes	that	are	similarly	expressed	perform	a	
similar	function,	then	this	gene	probably	
performs	that	same	function[97].	

Another	use	of	“guilt	by	association”	is	to	find	
disease-related	proteins.		The	idea	is	
the	same	as	above	–	given	a	gene	or	
protein	search	for	related	genes	or	
proteins	that	are	associated	with	
diseases[98].		If	they	are	related	
closely	to	the	gene	of	interest,	then	we	
might	assume	that	it	is	also	associated	
with	the	disease.		The	pictures	at	the	
right	show	the	result	of	querying	
GeneMANIA[99-101]	with	BRCA1,	
which	is	known	to	be	associated	with	
breast	cancer.		The	resulting	network	
includes	many	other	breast	cancer	
associated	genes,	including	BRCA2	
and	PALB2.	

Notes		
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Network	motifs	
A	network	motif	is	a	pattern	of	connectivity	
that	occurs	more	frequently	than	might	be	
expected	by	a	random	connection	of	
nodes[102].			As	might	be	expected	by	the	
reuse	we	often	see	in	biology,	biological	
networks	tend	to	have	a	small	set	of	
network	motifs	that	act	like	components	in	
a	larger	circuit[103,	104].			Network	motifs	
have	been	identified	in	the	gene	regulation	
network	of	E.	coli[105]	as	well	as	a	larger	
set	of	networks[106].		There	are	a	number	
of	network	motifs	that	have	been	identified	
in	biology,	including	feed	forward	
loops[107-111]	(like	the	one	shown	at	the	
right),	feedback	loops[112-114],	positive	and	negative	auto-regulation	loops[115].		These	
biological	circuits	are	critical	to	regulatory	processes	in	the	cell,	so	identifying	them	in	protein-
protein	interaction	networks	can	provide	important	clues	to	the	pathway	which	the	protein	
participate	in[116-118].	

	

Notes		

	

	 	



	 	 Revised	05/26/2016	

Overrepresentation	analysis		
Overrepresentation	analysis	(ORA)	is	an	
important	tool	used	to	identify	aspects	or	
attributes	of	a	subset	of	nodes	that	are	
statistically	more	common	in	those	nodes	than	in	
the	full	set.		The	most	common	approach	is	to	
cluster	a	group	of	genes	based	on	expression	
data	and	look	for	overrepresentation	of	
various	gene	ontology	(GO)[119]	terms	
in	the	groups	to	determine	if	a	
particular	expression	pattern	suggests	a	
particular	biological	process[120-123].			

One	of	the	things	to	keep	in	mind	when	
doing	ORA	is	that	the	resultant	p-values	
may	need	to	be	adjusted	since	multiple	
tests	are	conducted.		This	makes	sense	–	
if	we’re	performing	multiple	tests	we	
increase	the	possibility	that	we’ll	get	a	false	positive	based	on	random	chance.			Two	methods	for	
correcting	for	multiple	tests	are	the	Dunn-Bonferroni	Familywise	Error	Rate	(FWER)[124]	
correction	and	the	Benjamini	&	Hochberg	False	Discovery	Rate	(FDR)[125]	correction.			

The	image	at	the	right	shows	the	results	of	an	overrepresentation	analysis	of	a	yeast	expression	
data	set	using	the	Cytoscape	BiNGO	plugin[126].	

	

Notes		
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Visualization	
In	the	previous	sections,	we	made	use	of	a	number	of	visualization	techniques	that	are	easily	taken	
for	granted.	In	this	section,	we	will	detail	the	techniques	and	key	decisions	involved	in	producing	
network	and	pathway	visualizations.	Using	biological	networks	to	visualize	data	is	a	critical	aspect	
of	exploratory	analysis:	facilitating	interpretation,	new	insights	and	new	hypotheses	(PMID:	
20824171).	We	are	visual	creatures,	after	all.	

Depiction	
The	basic	visual	motif	of	networks	in	Cytoscape	is	that	of	nodes	and	
edges.	In	biological	networks,	the	nodes	often	represent	genes,	
proteins	or	small	molecules,	while	the	edges	(or	lines)	represent	
interactions	and	relationships	between	connected	nodes	(see	figure	at	
the	right).	Beyond	this	core	motif,	all	other	visual	features	(e.g.,	shape,	
size,	color,	thickness,	label,	transparency,	etc)	are	flexible	and	can	be	
used	to	represent	practically	any	data	value,	annotation	or	attribute.	

Data	Mapping	
The	first	thing	most	users	want	to	do	in	Cytoscape	is	to	map	their	data	
onto	networks	for	visualization.	The	variety	of	data	and	
network	types	has	already	been	explored	in	previous	
sections.	Here,	we	will	focus	on	the	mechanics	of	data	
mapping	using	the	VizMapper	interface.	

VizMapper	provides	a	user	interface	for	controlling	the	
mapping	of	data	attributes	to	visual	attributes.	There	is	
a	long	list	of	available	visual	attributes	that	can	be	
mapped	to,	including	node	properties	such	as	fill	color,	
border	color,	shape,	width,	height,	opacity	and	label,	
and	edge	properties	such	as	type,	color,	thickness,	as	
well	as	arrow	type,	size	and	color.		

Notes		
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Data	attributes	can	be	mapped	in	three	main	ways:	Passthrough	–	directly	passing	the	data	value	
to	the	visual	attribute,	e.g.,	labels.	Continuous	–	mapping	a	continuous	range	of	numerical	values	
to	a	range	of	visual	attributes,	e.g.,	expression	values	to	a	color	gradient.	Discrete	–	mapping	
discrete	data	values	(string	or	numeric)	to	specified	visual	attributes,	e.g.,	five	different	categories	
to	five	different	colors.	

The	next	two	examples	focus	on	two	types	of	
Continuous	data	mapping,	since	these	are	the	most	
useful	and	most	challenging.	First,	we	map	degree-of-
connectivity	(the	data	attribute)	to	node	size	(the	visual	
attribute),	so	that	more	connected	nodes	appear	
proportionally	larger,	thus	highlighting	potential	“hubs.”	
In	the	VizMapper	interface,	you	would	begin	by	double-
clicking	on	‘Node	Size’	and	selecting	the	data	attribute	
containing	degree	information.	Then	select	“Continuous	
Mapping”	type	and	click	the	graphic	to	edit	the	mapping	
parameters.	The	min	and	max	of	the	data	attribute	is	
given	as	the	x-axis	and	the	visual	attribute	is	the	y-axis.	

The	second	example	maps	continuous	expression	
values	to	node	color.	Once	again	in	the	VizMapper	
interface,	you	would	double-click	the	visual	attribute,	
pull-down	the	data	attribute	and	then	choose	
“Continuous	Mapping.”	When	you	click	on	the	graphic,	
you	will	notice	a	different	parameterization.	Once	again,	
the	data	attribute	is	given	as	the	x-axis,	but	now	instead	
of	a	y-axis,	you	will	find	thresholds	that	control	the	ends	
and	mid-point	of	a	color	gradient	as	well	as	step-
function	thresholds	to	set	discrete	colors	for	values	
exceeding	the	gradient	range.	This	is	a	handle	tool	for	
focusing	the	continuous	mapping	of	color	to	a	critical	
range	of	data.	

Notes		
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Layouts	
The	majority	of	network	information	does	not	come	with	
fixed	coordinates.	With	the	exception	of	manually	
curated	pathway	diagrams,	networks	typically	rely	on	
automated	layout	algorithms	to	position	nodes	and	edges.		
Cytoscape	comes	with	a	wide	variety	of	built-in	layout	
algorithms	that	can	be	applied	to	any	pathway	or	
network.	In	addition,	a	number	of	plugin	extensions	have	
been	developed	to	support	additional	layouts.		

Here,	we	will	describe	the	main	layout	types	natively	
supported	by	Cytoscape.	You	can	find	these	in	the	menu	
Layout	>	Cytoscape	Layouts.		

Grid	Layout	–	a	simple	layout	of	nodes	in	arbitrary	
order	arranged	in	a	grid	pattern.	This	layout	does	not	
take	in	account	edge	crossings,	weights	or	degree	of	
connectivity.	

Group	Attributes	Layout	–	performs	a	grid	layout	but	
orders	nodes	according	to	a	user-selected	attribute,	e.g.,	
ascending	order	based	on	a	numerical	attribute.	

Hierarchical	–	based	on	connectivity,	this	layout	
defines	ordered	layers	of	nodes	in	a	tree	structure,	e.g.,	
phylogenetic	trees.	

Circular	Layout	–	arranges	nodes	around	the	circumference	of	a	circle.	The	order	of	the	nodes	is	
arbitrary	in	the	basic	version.	There	two	other	versions:		Attribute	Circle	Layout,	which	orders	
nodes	based	on	a	user-selected	attribute,	and	Degree	Sorted	Circle	Layout,	which	orders	nodes	
based	on	their	number	of	connections.	Pro-tip:	The	Degree	Sorted	Circle	Layout	calculates	the	
degree	for	each	node	and	creates	a	new	attribute	that	can	be	used	for	other	purposes	as	well,	e.g.,	
data	mapping.	

Notes		
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Force-Directed	Layout	–	simulates	edges	as	springs,	
resulting	in	clusters	of	highly	connected	nodes	with	
minimally	connected	nodes	spaced	and	in	the	periphery.	
You	can	also	choose	to	influence	the	layout	based	on	an	
edge	attribute,	if	available.	A	related	layout	is	Spring	
Embedded,	which	also	simulates	edges	as	springs.	Both	
of	these	layouts	also	have	explicit	Edge-Weighted-	
versions	that	provide	more	control.	

Furthermore,	you	can	apply	layouts	to	selected	subsets	
of	nodes.	If	you	make	a	node	selection	prior	to	browsing	
the	Layout	menu,	you	will	see	an	additional	submenu	
option	to	apply	the	layout	to	“All	nodes”	or	“Selected	
Nodes	Only.”	By	using	this	feature,	you	can	effectively	
combine	different	layouts	for	a	single	network.	For	
example,	after	applying	a	Force-Directed	Layout,	you	
could	then	select	a	connected	subset	and	apply	a	
Hierarchical	Layout	just	to	that	set.	

To	achieve	just	the	right	visual	layout	for	your	network,	
you	may	need	to	“tune”	a	layout	algorithm.	You	can	do	
this	by	going	to	Layout	>	Settings…	and	then	select	the	
layout	algorithm	you	want	to	tune.	The	settings	expose	
the	parameters	of	each	algorithm	so	that	you	can	
explore	different	layout	behaviours.	

	

Notes		
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Animation	
There	are	cases	where	a	static	image	doesn’t	tell	the	
whole	story.	Perhaps	you	have	collected	data	in	a	time	
series	or	have	more	than	one	condition	you	want	to	
compare.	Animation	is	a	key	technique	for	visualizing	
change.		

There	are	a	handful	of	plugins	for	Cytoscape	that	
support	automatic,	step-wise	animation	through	
defined	VizMapper	styles	(e.g.,	clusterMaker	and	
VistaClara).	But	there	is	also	a	dedicated	plugin	called	
CyAnimator	that	supports	flexible	animation	creation.	

Using	CyAnimator,	you	choose	the	frames	of	the	
animation	as	you	work.	Interpolation	fills-in	the	
transitions	between	frames	for	a	wide	range	of	visual	
features,	including	position,	size,	color,	and	opacity.	A	
final	set	of	images	are	generated	and	ready	to	be	
imported	into	a	number	of	free	or	commercial	movie	file	
generators.	

	

	

Notes		
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Introduction	to	Cytoscape		
	

Cytoscape	is	an	open	source	bioinformatics	software	
platform	for	visualizing	molecular	interaction	
networks	and	biological	pathways	and	integrating	
these	networks	with	annotations,	gene	expression	
profiles	and	other	state	data.			Although	Cytoscape	was	
originally	designed	for	biological	research,	now	it	is	a	
general	platform	for	complex	network	analysis	and	
visualization.			Cytoscape	core	distribution	provides	a	
basic	set	of	features	for	data	integration	and	
visualization.			Additional	features	are	available	as	
plugins	(now	called	Apps).			Plugins	are	available	for	
network	and	molecular	profiling	analyses,	new	layouts,	
additional	file	format	support,	scripting,	and	connection	
with	databases.			Plugins	may	be	developed	by	anyone	
using	the	Cytoscape	open	API	based	on	Java™	technology	
and	plugin	community	development	is	encouraged.	Most	
of	the	plugins	are	freely	available.				

Cytoscape	is	a	collaborative	project	between	the	
Institute	for	Systems	Biology	(Leroy	Hood	lab),	the	
University	of	California	San	Diego	(Trey	Ideker	lab),	
Memorial	Sloan-Kettering	Cancer	Center	(Chris	Sander	
lab),	the	Institut	Pasteur	(Benno	Schwikowski	lab),	
Agilent	Technologies	(Annette	Adler	team),	the	
University	of	Toronto	(Gary	Bader	Lab),	Gladstone	
Institutes	(Bruce	Conklin	and	Alex	Pico),	and	the	
University	of	California,	San	Francisco	(Tom	Ferrin	lab).		

Notes		



	 	 Revised	05/26/2016	

Core	Concepts	
Cytoscape	creates	networks,	where	nodes	of	the	
network	represent	objects	(such	as	proteins)	and	
connecting	edges	represent	relationships	between	
them	(such	as	physical	interactions).			Each	Edge	
connects	two	Nodes.				Edges	can	be	directed	or	
undirected.		In	the	case	of	a	directed	edge,	there	is	a	
Source	and	a	Target	Node.			Once	this	basic	network	is	
created,	various	attributes	of	the	nodes	and	edges	
(such	as	protein	expression	levels	or	strength	of	
interaction)	can	be	added	to	the	network	and	
incorporated	as	visual	cues	like	shape	or	color.		
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Visual	Styles	
One	of	Cytoscape's	strengths	in	network	visualization	is	the	ability	to	allow	users	to	encode	any	
attribute	of	their	data	(name,	type,	degree,	weight,	expression	data,	etc.)	as	a	visual	property	(such	
as	color,	size,	transparency,	or	font	type).	A	set	of	these	encoded	or	mapped	attributes	is	called	a	
Visual	Style	and	can	be	created	or	edited	using	the	Cytoscape	VizMapper.	With	the	VizMapper,	
the	visual	appearance	of	your	network	is	easily	customized.	For	example,	you	can:	

 

 

	

	

	

	

	

	

	

	

		

	

	

	

	

	

	 	

Use	specific	line	types	to	indicate	
different	types	of	interactions.	

Set	node	sizes	based	on	the	degree	of	
connectivity	of	the	nodes.	

Browse	extremely	dense	networks	
by	controlling	for	the	opacity	of	
nodes.	

Set	node	font	sizes	based	on	the	degree	of	
connectivity	of	the	nodes.	

Visualize	Gene	Expression	data	its	biological	context	by	
superimposing	colors	onto	the	nodes	based	upon	their	Gene	
Expression	data	values.		
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Apps	
Cytoscape	allows	users	to	extend	its	functionality	
by	creating	or	downloading	additional	software	
modules	known	as	“Apps”.		These	extensions	
provide	additional	functionality	in	areas	such	as	
network	data	query	and	download	services;	
network	data	integration	and	filtering;	attribute-
directed	network	layout;	GO	enrichment	analysis7;	
as	well	as	identification	of	network	motifs,	
functional	modules,	protein	complexes,	or	domain	
interactions.	
	
Links	to	these	apps	can	be	found	at	
http://apps.cytoscape.org	
	
Altogether,	Cytoscape	and	its	Apps	provide	a	
powerful	tool	kit	designed	to	help	researchers	
answer	specific	biological	questions	using	large	
amounts	of	cellular	network	and	molecular	
profiling	information. 
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BiNGO	
BiNGO	is	a	Java-based	tool	to	determine	which	
Gene	Ontology	(GO)	categories	are	statistically	
overrepresented	in	a	set	of	genes	or	a	subgraph	
of	a	biological	network.		BiNGO	is	implemented	
as	a	plugin	for	Cytoscape.		
	
BiNGO	maps	the	predominant	functional	themes	
of	a	given	gene	set	on	the	GO	hierarchy,	and	
outputs	this	mapping	as	a	Cytoscape	graph.	Gene	
sets	can	either	be	selected	or	computed	from	a	
Cytoscape	network	(as	subgraphs)	or	compiled	
from	sources	other	than	Cytoscape	(e.g.	a	list	of	
genes	that	are	significantly	upregulated	in	a	
microarray	experiment).		
	
The	main	advantage	of	BiNGO	over	
other	GO	tools	is	the	fact	that	it	can	be	
used	directly	and	interactively	on	
molecular	interaction	graphs.	Another	
plus	is	that	BiNGO	takes	full	advantage	
of	Cytoscape's	versatile	visualization	
environment.	This	allows	you	to	
produce	customized	high-quality	
figures. 
 
BiNGO	features	include:	

• Assessing	overrepresentation	or	
underrepresentation	of	GO	
categories	

• Graph	or	gene	list	input	
• Batch	mode:	analyze	several	clusters	simultaneously	using	same	settings	
• Different	GO	and	GOSlim	ontologies	
• Wide	range	of	organisms	
• Evidence	code	filtering	
• Hypergeometric	or	binomial	test	for	overrepresentation	
• Multiple	testing	correction	using	Bonferroni	(FWER)	or	Benjamini&Hochberg	(FDR)	correction	
• Interactive	visualization	of	results	mapped	on	the	GO	hierarchy.		
• Extensive	results	in	tab-delimited	text	file	format	
• Ability	to	make	and	use	custom	annotations,	ontologies	and	reference	sets 
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Agilent	Literature	Search	
Agilent	Literature	Search	Software	is	a	meta-search	tool	for	automatically	querying	multiple	text-
based	search	engines	(both	public	and	proprietary)	in	
order	to	aid	biologists	faced	with	the	daunting	task	of	
manually	searching	and	extracting	associations	among	
genes/proteins	of	interest.		

Agilent	Literature	Search	Software	can	be	used	in	
conjunction	with	Cytoscape,	which	provides	a	means	
of	generating	an	overview	network	view	of	
gene/protein	associations.	

Agilent	Literature	Search	software	provides	an	easy-
to-use	interface	to	its	powerful	querying	capabilities.	
When	a	query	is	entered,	it	is	submitted	to	multiple	
user-selected	search	engines,	and	the	retrieved	
results	(documents)	are	fetched	from	their	
respective	sources.	Each	document	is	then	parsed	
into	sentences	and	analyzed	for	protein-protein	
associations.	Agilent	Literature	Search	Software	
uses	a	set	of	"context"	files	(lexicons)	for	defining	
protein	names	(and	aliases)	and	association	terms	
(verbs)	of	interest.	Associations	extracted	from	
these	documents	are	collected	into	a	Cytoscape	
network.	The	sentences	and	source	hyperlinks	for	
each	association	are	further	stored	as	attributes	of	
the	corresponding	Cytoscape	edges.		

Agilent	Literature	Search	Plugin	Features:	
• Meta-search	engine	combining	Information	Retrieval	&	Knowledge	Extraction		
• PubMed,	OMIM,	USPTO	
• Load/Save/Reanalyze	search	results		
• Paged	Search	results	view		
• User	context-based	aliasing		
• File-based	lexicon	management		
• Symbol	identification,	interaction	extraction		
• Cytoscape	session	load/save	compatible	
• Putative	network	generation	from	literature	
• Literature-based	evidence	gathering	for	Cytoscape	Edges		
• Extend	a	Cytoscape	network	with	associations	extracted	from	the	literature	
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Loading	Networks	
There	are	4	different	ways	of	creating	networks	in	
Cytoscape:		

1. Importing	networks	from	Public	Databases		
2. Importing	pre-existing,	unformatted	text	or	Excel	

files.		
3. Importing	pre-existing,	formatted	network	files..		
4. Creating	an	empty	network	and	manually	adding	

nodes	and	edges.  

Loading	Networks	from	a	Web	Service	
In	this	section	we	will	look	at	how	to	import	networks	
using	publicly	accessible	databases.		
	
First,	select	the	FileàImportàNetwork	from	Public	
Databases	menu	item.		By	default,	Cytoscape	only	provides	one	
public	database	item	(Interaction	Database	Universal	Client),	
but	there	are	several	others	available	as	apps.	
	
	
Step	1:	Search.	Type	in	a	search	term	or	set	of	search	terms	
separated	by	newlines.			In	this	example	we	use	the	Interaction	
Database	Universal	Client,	and	enter	TRAF1	as	our	search	term.	
	
	
	
	

Step	2:		Select.			Select	Reactome-FIs	as	our	database	
source	and	select	Import.		This	will	import	the	
interactions	provided	by	Reactome	into	a	Cytoscape	
network.		When the network has successfully loaded, you 
will see it displayed in the top center panel (Network 
View).   There will also be a ‘birds eye’ overview in 
bottom-left panel that shows the entire network.	
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Now	let’s	extend	our	network	by	merging	in	the	known	
protein-protein	interactions	for	TRAF2.			Follow	the	same	
procedure	as	above	but	this	time	select	TRAF2	in Step 1 to 
search and import the interactions from Reactome.  	

 
 
 
 
 
 
This	will	bring	up	the	protein-protein	interaction	
network	for	TRAF2.		The	image	to	the	right	shows	the	
two	star	networks:	one	for	TRAF1	and	one	for	TRAF2.		
We	can	use	Cytoscape’s	internal	tools	to	merge	them.	
 
 
 
 
 
 
 
	
Under	the	Cytoscape	Tools	menu,	select	Merge	Networks.			
Select	both	networks	(TRAF1	and	TRAF2)	that	you	want	to	
merge	and	click	“Merge”.	
 
 
 
 
 
 
 
The	combined	TRAF1/TRAF2	protein-protein	
interaction	network	will	be	displayed	(the	image	at	
right	shows	TRAF1	and	TRAF2	selected	for	clarity).	
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Load	a	Network	from	a	Table	
In	this	section	we	will	explore	how	to	create	
Cytoscape	network	by	importing	a	pre-existing	
text	or	Excel	file.		The	figure	at	right	shows	one	
such	example	network,	consisting	of	four	nodes	
and	four	edges.	

Let’s	begin	creating	the	network	by	selecting	the	
FileàImportàNetwork	à 	File…				menu	item.	

In	this	example,	we	will	import	the	file	
galFiltered.csv.	

	

Notes	
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An	interactive	graphical	user	interface	allows	you	to	
specify	parsing	options	for	specified	files.	The	screen	
provides	a	preview	that	shows	how	the	file	will	be	
interpreted	given	the	current	configuration.	As	the	
configuration	changes,	the	preview	updates	
automatically.			In	addition	to	specifying	how	the	file	
will	be	interpreted,	you	also	choose	the	columns	that	
represent	the	source	nodes	( ),	the	target	nodes	( ),	
an	optional	edge	interaction	type	( ),	source	attribute	
( ),	target	attribute	( ),	or	edge	attribute	( ).		To	
change	the	default	selection	chosen	by	Cytoscape,	
click	on	the	arrow	in	the	column	heading.		The	dialog	
will	also	allow	you	to	change	the	column	type.	

Under	the	Advanced	Options	section,	you	will	see	a	set	of	checkboxes	appear.		These	allow	you	to	
choose	the:		

• Delimiter.		The	delimiter	character	that	separates	
columns	(fields)	in	the	import	file.		This	can	be	a	
tab,	comma,	semicolon,	space,	or	any	arbitrary	
delimiter	character	that	you	define.	

• Default	Interaction:	You	can	set	the	name	of	the	
Default	Interaction	type,	which	is	used	to	name	an	
edge.			The	example	in	our	figure	uses	‘interacts	
with’	(for	protein-protein	interaction)	as	its	default	
interaction.	

• Column	Names.			You	can	choose	whether	to	use	
the	first	line	of	the	file	to	supply	column	names,	one	
name	per	delimited	column	in	the	file.			

• Start	import	row.			You	can	set	the	import	line	
number	so	that	you	can	skip	over	any	initial	header	
or	comment	lines	in	the	file.	

• Ignore	lines	starting	with.				You	can	indicate	a	character,	e.g.	‘#’,	to	distinguish	comment	
lines	in	the	import	files,	so	that	they	are	not	treated	as	network	data.	
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When	you	are	satisfied	with	the	settings,	press	the	
import	button	and	the	network	will	be	imported.			You	
will	see	a	figure	that	looks	like	the	figure	on	right.			
	
The	values	of	edge	attributes	can	be	used	as	arguments	
to	graph	layout	and	other	computational	operations.		In	
the	bottom	example	on	right,	the	attribute	for	Weight	
is	used	in	the	calculation	of	coordinate	positions	using	
Cytoscape’s.	Force-Directed	Layout.		
	

Notes	
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Load	Tables	
In	this	section	we	will	explore	how	to	create	
Cytoscape	attributes	and	values	by	importing	a	pre-
existing	text	or	Excel	file.			

Let’s	begin	by	selecting	the	File	->	Import	->	Table	
->	File…				menu	item.	In	this	example,	we	import	
the	file	galExpData.csv.	

The	graphical	user	interface	is	similar	as	for	creating	
networks	and	allows	you	to	interactively	specify	
parsing	options	for	the	specified	files.	The	screen	
provides	a	preview	that	shows	how	the	file	will	be	
interpreted	given	the	current	configuration.	As	the	
configuration	changes,	the	preview	updates	
automatically.		

		

Notes	
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To	change	the	default	selection	chosen	by	Cytoscape,	click	on	the	arrow	in	the	column	heading	and	
a	dialog	box	will	be	displayed.			You	can	change	the	name	for	the	attribute.	You	can	decide	whether	
the	column	is	imported	or	not	by	selecting	one	of	the	two	options:	imported	( )	and	not	imported	
( ).		

You	can	also	set	the	Data	type	of	the	elements	in	the	data	
column,	to	one	of	the	primitive	data	types	that	Cytoscape	
supports.	These	are	String,	Integer,	Long	Integer,	Floating	
Point,	and	Boolean.	You	can	also	set	the	Data	type	of	the	
column	to	be	a	list	of	primitive	elements	of	one	datatype.	

Now	you	need	to	map	unique	identifiers	between	the	
entries	in	the	data	and	the	nodes	in	the	network.		The	key	
point	of	this	is	to	identify	which	nodes	in	the	network	are	
equivalent	to	which	entries	in	the	table.	This	enables	
mapping	of	data	values	into	visual	properties	like	Color	
and	Shape.	This	kind	of	mapping	is	typically	done	by	
comparing	the	unique	Identifier	attribute	value	for	each	node	(Key	Column	for	Network)	with	
the	unique	Identifier	value	for	each	data	value	( ).			As	a	default,	Cytoscape	looks	for	an	attribute	
value	of	‘ID’	in	the	network	and	a	user-supplied	Key	in	the	dataset.		

The	Key	Column	for	Network	can	be	changed	using	a	combo	box	and	allows	you	to	set	the	node	
attribute	column	that	is	to	be	used	as	key	to	map	to.	The	user	can	change	the	Key	by	pressing	the	
key	button	( )	for	the	column	that	is	to	be	used	as	key	for	mapping	values	in	the	dataset.			

If	there	is	a	match	between	the	value	of	a	Key	in	the	dataset	and	the	value	the	Key	Column	for	
Network	field	in	the	network,	then	all	attribute-value	pairs	associated	with	the	element	in	the	
dataset	are	assigned	as	well	to	the	matching	node	in	the	network.		

Under	the	Advanced	Options	section,	you	will	see	a	set	of	checkboxes	appear.		These	allow	you	to	
choose	the:		

• Delimiter.		The	delimiter	character	that	separates	
columns	(fields)	in	the	import	file.		This	can	be	a	tab,	
comma,	semicolon,	space,	or	any	arbitrary	delimiter	
character	that	you	define.	

• Column	Names.			You	can	choose	whether	to	use	the	
first	line	of	the	file	to	supply	column	names,	one	name	
per	delimited	column	in	the	file.			

• Start	import	row.			You	can	set	the	import	line	number	
so	that	you	can	skip	over	any	initial	header	or	
comment	lines	in	the	file.	

• Ignore	lines	starting	with.				You	can	indicate	a	
character,	e.g.	‘#’,	to	distinguish	comment	lines	in	the	
import	files,	so	that	they	are	not	treated	as	network	data.	
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Once	attributes	are	imported,	we	can	inspect	them	in	
the	Table	Panel.	Right	clicking	on	the	 	icon	in	the	
toolbar	will	bring	up	a	menu	of	checkboxes.	If	you	
check	a	checkbox	for	any	attribute	in	that	attribute	
list,	its	values	will	be	displayed	as	a	column	of	values	
on	the	Table	Panel.	The	attribute	list	also	contains	
information	about	the	Data	type	of	each	column	and	
if	it	belongs	to	the	whole	network	collection	or	only	
to	the	current	network.	

If	you	a	select	a	node	in	the	network,	its	attribute	
values	will	be	displayed	in	the	control	panel,	but	by	
default,	if	no	nodes	are	selected,	all	attribute	rows	are	
shown.	

Notes	
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Tips	and	Tricks	
Cytoscape	is	a	large,	complex,	and	dynamic	
software	system.				A	little	knowledge	of	the	
internals	organization	and	operational	model	of	
the	software	will	enable	more	efficient	use	of	the	
software.			Here	are	some	useful	Tips	&	Tricks	to	
help	you	get	the	most	out	of	your	Cytoscape	usage.	

The	‘”Root	Graph”	
There	is	one	central	root	graph	that	contains	all	
nodes	and	edges.			Thus	all	networks	are	‘views’	on	
that	single	graph,	and	nodes	and	edges	are	unique	
across	all	networks.			Modifying	a	node	in	one	
network	will	modify	that	node	in	all	other	
networks	that	it	appears	in.			There	is	no	way	to	
have	two	or	more	copies	of	a	node	with	the	same	
ID.			The	only	workaround	would	be	to	make	a	copy	
of	a	Cytoscape	session.	

Network	Views	
For	efficiency	in	dealing	with	large	networks,	a	view	
is	not	automatically	generated	when	the	size	of	the	
network	is	over	a	user-definable	threshold.				You	
can	manually	generate	a	Network	View	by	right-
clicking	on	its	entry	in	the	Network	Navigator	Panel	
(upper	left	o	Cytoscape	desktop).,	then	selecting		
‘Create	View’.			You	can	also	use	that	right-menu	
item	to	‘Destroy	View’,	‘Destroy	Network”,	and	edit	
the	Network’s	title.		

To	improve	interactive	performance,	Cytoscape	has	the	concept	of	Levels	of	Detail?		This	is	
basically	a	mechanism	for	semantic	zooming,	
where	different	levels	of	detail	com	into	play	at	
different	levels	of	detail	(think	of	the	Google	Maps	
interface	where	a	City	is	represented	by	a	yellow	
patch	at	high	level	then	shows	more	of	the	
structure	of	streets	and	avenues	as	you	zoom	in.	

Some	Cytoscape	attributes	will	only	be	apparent	
when	you	zoom	in.		The	level	of	detail	for	various	
attributes	can	be	changed	in	the	preferences.		To	
see	what	things	look	like	in	full	detail,	select	the	
ViewàShow	Graphics	Details	menu	item..	



	 	 Revised	05/26/2016	

	

Sessions	
Sessions	save	pretty	much	everything:	Networks,	Properties.	Visual	styles,	Screen	sizes,	and	many	
other	types	of	information.	When	working	on	a	complex	study	of	workflow,	it	is	often	prudent	to	
save	one’s	intermediate	results	as	a	session,	so	that	the	current	state	of	an	activity	is	persisted	and	
can	be	resumed	without	having	to	repeat	earlier	low-level	operations.						Not	all	state	is	the	same,	
however.			For	example,	saving	a	session	on	a	large	screen	may	require	some	resizing	when	re-
opened.	

Task	Monitor	
The	Cytoscape	task	monitor	will	show	the	
messages	for	the	current	task	and	all	of	the	
completed	tasks.		You	can	show	the	task	
monitor	by	clicking	its	icon	in	the	lower	left-
hand	corner.	

Cytoscape	will	also	log	more	detailed	messages	
to	the	framework-cytoscape.log	file	in	
CytoscapeConfiguration/3	directory.	

Memory	
Cytoscape	uses	a	lot	of	memory	and,	as	a	Java	
system,	doesn’t	like	to	let	go	of	it.			When	
working	with	large	networks,	an	occasional	save	
session	and	restart	will	help	clear	out	memory.			Another	efficiency	measure	is	to	destroy	large	
network	views	when	not	needed.	

Cytoscape	now	provides	a	memory	indicator	in	the	lower	right-hand	corner	of	the	window.		This	
will	tell	you	if	you	have	enough	memory	(green)	or	you	are	running	out	of	memory	(yellow,	red).		
Details	are	available	by	clicking	the	button	and	you	will	be	given	the	option	to	“Free	Unused	
Memory”	to	lower	memory	as	much	as	possible.	
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Final	points	on	Tips	and	Tricks	
• CytoscapeConfiguration	directory	

– This	directory	is	typically	located	under	
your	home	directory,	for	example	on	a	
Macintosh	system	it	will	be	under		

/Users/<username>	

– Your	defaults	and	any	plugins	downloaded	
from	the	app	manager	will	go	in	this	
directory.			Also,	apps	may	use	this	directory	
to	store	configuration	

– Sometimes,,	if		things	get	really	messed	up,	
deleting	(or	renaming)	this	directory	can	give	you	
a	“clean	slate”		

• App	manager	

– This	is	where	you	search/install/update/uninstall	apps	

– You	now	have	the	option	of	disabling	vs.	uninstalling…	

– Can	also	install	and	update	apps	directly	from	the	App	Store	website,	if	you	have	Cytoscape	
3	up	and	running	

Notes		 	
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Demo/Sample	use	cases		

Use	case	1:	Expression	data	analysis	
This	use	case	highlights	the	visual	display	of	
expression	data,	integrated	clustering	features,	
and	basic	Gene	Ontology	overrepresentation	
analysis.	Note:	we	are	starting	with	an	expression	
dataset	that	has	already	been	normalized,	
statistically	analyzed,	formatted,	imported	and	
associated	with	an	interaction	network.	

The	dataset	
Differential	gene	expression	of	GAL	deletion	
mutants	grown	in	the	presence	and	absence	of	
galactose[127].		Fold	values	were	mapped	onto	a	
protein-protein	interaction	network	focusing	on	
galactose	utilization	in	yeast,	Saccharomyces	
cerevisiae.	Additional	annotations	(e.g.,	gene	and	
protein	identifiers,	GO	terms,	pathway	
associations,	etc)	have	also	been	added	as	node	
attributes.	This	dataset	is	included	with	the	
download	of	Cytoscape	in	the	sampleData	folder	
and	is	called	galFiltered.cys.		

Locate	and	open	the	galFiltered.cys	session	file.	
Check	out	the	VizMapper	settings	for	node	color.	
By	default,	the	nodes	are	colored	by	the	fold	value	
gal4RGexp.	Explore	the	visualization	of	other	fold	
values	in	the	dataset:	gal1RGexp	and	gal80Rexp.	

Notes		
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Cluster	analysis	
To	explore	the	expression	profiles	for	the	three	deletions,	we	
can	perform	clustering	within	Cytoscape	using	the	
clusterMaker	app.	

In	the	Apps	menu,	select	clusterMaker	>	Hierarchical.	

• Choose	the	type	of	clustering:		
o pairwise	average-linkage	

• Choose	the	attributes	of	array	data:	
o node.gal1RGexp	
o node.gal4RGexp	
o node.gal80Rexp	

• Check	Show	Treeview	when	complete	
• Click:	OK 

	

This	will	bring	up	the	TreeView	of	your	cluster	results.	
Each	row	is	a	gene	and	the	three	columns	correspond	to	
the	three	data	attributes.	A	dendrogram	to	the	left	
expresses	the	relationship	between	clusters,	and	the	
region	to	the	right	shows	a	close-up	and	labeled	view	of	
selected	rows.	

If	the	colors	are	too	dark,	or	if	you	prefer	other	colors	
altogether,	you	can	open	Settings…	and	adjust	a	number	
of	preferences.	

Now,	select	the	top	most	branch	of	the	dendrogram,	as	
shown	on	the	right.	Notice	that	selections	in	TreeView	
correspond	to	selections	in	the	network!		

Notes	
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GO	term	overrepresentation	analysis	
Now	we	can	see	if	any	of	the	selected	genes	from	
that	first	cluster	show	any	GO	term	
overrepresentation.	In	other	words,	are	there	
particular	GO	terms	that	are	enriched	(or	
overrepresented)	in	this	subset	of	genes?	We	can	
do	this	using	the	BiNGO	app.	

• Apps	>	BiNGO	
• Give	the	cluster	a	name	
• Click:	Start	BiNGO	
• Note:	there	are	many	parameters	you	can	

play	with.	The	defaults	are	usually	sufficient	
for	a	first	pass	as	major	trends.	

	

The	results	are	displayed	as	a	table	and	as	a	
network	of	GO	associations.	The	GO	terms	are	
connected	based	on	their	inherent	hierarchical	
relationship	and	they	are	colored	based	on	the	
significance	of	their	overrepresentation	in	your	
cluster.		

	

Notes	
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Active	modules	
Using	the	jActiveModules	app,	we	can	also	identify	
clusters	that	show	differential	expression	over	user-
specified	conditions	or	time-points.	Here,	we	will	
use	the	p-values	for	the	differential	expression	of	
the	GAL	deletion	mutants.	

• Select	the	jActiveModules	tab	in	the	Control	
Panel	

• Choose	the	galFiltered.sif	interaction	
network	

• Choose	the	attributes	that	contain	the	
differential	expression	p-values:		

o gal1RSig,	
o gal4RSig	
o gal80RSig	

• Click	Search	
	

This	will	invoke	the	creation	of	several	new	
networks:	one	for	each	cluster	identified	by	
jActiveModules	and	one	overview	network	of	all	
modules.		Each	node	in	the	overview	network	has	a	
node	score	that	shows	how	significant	
the	identified	module	is	and	the	edges	
are	weighted	by	the	number	of	nodes	
they	share.		Each	module	network	has	
the	same	attributes	as	the	original	
network	and	we	can	look	at	the	
significance	values	in	the	Node	Table	
panel.	

Notes		
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Use	case	2:	Protein	complexes	in	protein-
protein	interaction	networks	
This	use	case	highlights	the	combined	use	of	MCL	
clustering	of	protein-protein	interaction	(PPI)	
networks	and	hierarchical	clustering	of	epistatic	
mini-array	profile	(EMAP)	data	to	explore	
potential	biological	protein	complexes.	

The	dataset	
We	will	be	working	with	a	Cytoscape	session	file	
containing	three	networks:	one	is	a	yeast	PPI[27]	
and	the	other	two	are	yeast	EMAP	datasets	[7,	
128].		Note:	we	will	not	bother	viewing	the	EMAP	
datasets	as	networks,	but	rather	treat	them	as	sets	
of	nodes	and	attributes.	You	can	perform	clustering	
on	sets	of	nodes	without	creating	a	network	
view!	The	key	to	making	this	analysis	work	is	
having	the	same	node	identifiers	in	both	the	
PPI	and	EMAPs.		

The	dataset	is	provided	with	this	tutorial	and	
is	called	collinsPlus.cys:	

• combined_scores_good.txt	(PPI)	
• DNA	and	Tran	07-21-06b.csv	(EMAP)	
• RNAPuberNov2+Meg6c.csv	(EMAP)	
	
	

Notes	
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MCL	clusters	in	the	PPI	network	
First,	we	will	identify	the	MCL	clusters	in	the	protein-
protein	interaction	network.	Under	the	Plugins	menu,	
choose	Cluster	and	then	MCL	cluster:		

• Density	Parameter:	1.8	
• Array	source:	PE	Score	
• Check	Create	new	clustered	network	and	Restore	

inter-cluster	edges	after	layout	
• Click:	OK	

	

There	are	your	MCL	clusters.	Beautiful,	
aren’t	they!	These	are	our	first	
approximation	of	potential	protein	
complexes	based	solely	on	tightly	
interacting	protein	clusters.		

Next,	we	consider	the	clusters	generated	
from	EMAP	data	as	an	orthogonal	form	of	
evidence	based	on	genetic	interactions.	
Combining	both	cluster	results	provides	a	
more	complete	picture.	

	

Notes	
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Hierarchical	clustering	of	EMAP	data	
Select	the	“DNA	and	Tran…”	dataset	in	the	Network	
panel	on	the	left.	Note:	the	red	highlight	simply	
indicates	that	no	network	view	has	been	created.	No	
problem.	Once	again,	go	to	Apps	>	clusterMaker	>	
Hierarchical	Cluster:		

• Linkage:	pairwise	average-linkage	
• Distance	Metric:	Uncentered	correlation	
• Edge	column	for	cluster:	DNA	Strenth	
• Check:	Show	TreeView	when	complete	
• Click	OK	

	

The	EMAP	clusters	identify	potential	complexes	based	on	genetic	(functional)	interactions.		Now,	
we	can	explore	the	correspondence	of	evidence	from	these	two	methods.	For	example,	search	for	
GIM5	and	select	the	entire	cluster.	Notice	how	the	corresponding	interactions	are	dynamically	
highlighted	in	the	TreeView.	Notice	how	both	EMAP	and	PPI	data	do	not	provide	strong	support	
for	the	inclusion	of	BUD27	in	this	potential	complex.	

Notes	
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Hands-on	tutorial:	Introduction	to	Cytoscape		
	

This	tutorial	will	cover:	

1. Navigating	Cytoscape	
2. Visualizing	Data	on	Networks	
3. Network	and	Pathway	Resources	
4. Plugin	Manager	
5. Plugin	Demos	

	

By	the	end	of	the	tutorial,	you	should	be	able	to	use	Cytoscape	to	import	networks	and	attributes	
and	visualize	those	attributes	on	the	network.	

Notes		
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Hands-on	tutorial:	Working	with	data		
	

This	tutorial	will	introduce	you	to:	

1. Searching	Internet	interaction	databases	with	query	terms.	
2. Mapping	Identifiers	of	different	types	to	networks.	
3. Finding	your	query	terms	in	the	downloaded	network.	

	

The	second	half	of	the	tutorial	will	introduce	you	to	some	advanced	basics	in	Cytoscape:	

1. Apply	filters	to	filter	out	low-confidence	edges.	
2. Perform	basic	edits	using	the	Cytoscape	graph	editor.	

	

Notes	
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Hands-on	tutorial:	Analysis	of	microarray	data		
	

This	tutorial	will	introduce	you	to:	

1. Combining	data	from	two	different	sources:	experimental	data	in	the	form	of	microarrray	
expression	data	and	network	data	in	the	form	of	interaction	data.	

2. Visualizing	networks	using	expression	data.	
3. Filtering	networks	based	on	expression	data.	

	

NOTE:	The	expression	data	used	in	this	example	has	been	pre-processed	to	work	with	the	
interaction	network	used.	

	

Notes	
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